import clarabel
import numpy as np
from scipy import sparse
# Define problem data
P = sparse.csc_matrix([[6., 0.], [0., 4.]])
P = sparse.triu(P).tocsc()
q = np.array([-1., -4.])
A = sparse.csc_matrix(
[[ 1., -2.], # <-- LHS of equality constraint (lower bound)
[ 1., 0.], # <-- LHS of inequality constraint (upper bound)
[ 0., 1.], # <-- LHS of inequality constraint (upper bound)
[-1., 0.], # <-- LHS of inequality constraint (lower bound)
[ 0., -1.]]) # <-- LHS of inequality constraint (lower bound)
b = np.array([0., 1., 1., 1., 1.])
cones = [
clarabel.ZeroConeT(1),
clarabel.NonnegativeConeT(4)
]
settings = clarabel.DefaultSettings()
solver = clarabel.DefaultSolver(P, q, A, b, cones, settings)
solver.solve()