using Clarabel, SparseArrays

P = spzeros(6,6)

q = [0., 0., -1., 0., 0., -1.]

A = sparse([
       -1.  0.  0.  0.  0.  0.;
        0. -1.  0.  0.  0.  0.;
        0.  0. -1.  0.  0.  0.;
        0.  0.  0. -1.  0.  0.;
        0.  0.  0.  0. -1.  0.;
        0.  0.  0.  0.  0. -1.;
        1.  2.  0.  3.  0.  0.;
        0.  0.  0.  0.  1.  0.])

b = [0., 0., 0., 0., 0., 0., 3., 1.]

cones  = [Clarabel.PowerConeT(0.6), Clarabel.PowerConeT(0.1), Clarabel.ZeroConeT(2)]

solver = Clarabel.Solver()

settings = Clarabel.Settings()

Clarabel.setup!(solver, P, q, A, b, cones, settings)

result = Clarabel.solve!(solver)
-------------------------------------------------------------
           Clarabel.jl v0.11.0  -  Clever Acronym

                   (c) Paul Goulart
                University of Oxford, 2022
-------------------------------------------------------------

problem:
  variables     = 6
  constraints   = 8
  nnz(P)        = 0
  nnz(A)        = 10
  cones (total) = 3
    : Zero        = 1,  numel = 2
    : Power       = 2,  numel = (3,3)

settings:
  linear algebra: direct / qdldl, precision: 64 bit (1 thread)
  max iter = 200, time limit = Inf,  max step = 0.990
  tol_feas = 1.0e-08, tol_gap_abs = 1.0e-08, tol_gap_rel = 1.0e-08,
  static reg : on, ϵ1 = 1.0e-08, ϵ2 = 4.9e-32
  dynamic reg: on, ϵ = 1.0e-13, δ = 2.0e-07
  iter refine: on, reltol = 1.0e-13, abstol = 1.0e-12,
               max iter = 10, stop ratio = 5.0
  equilibrate: on, min_scale = 1.0e-04, max_scale = 1.0e+04
               max iter = 10

iter    pcost        dcost       gap       pres      dres      k/t        μ       step
---------------------------------------------------------------------------------------------
  0   0.0000e+00  -0.0000e+00  0.00e+00  7.43e-01  8.26e-01  1.00e+00  1.00e+00   ------
  1  -7.2016e-01  -7.0464e-01  1.55e-02  1.63e-01  2.05e-01  2.71e-01  2.63e-01  7.92e-01
  2  -1.8150e+00  -1.7812e+00  1.90e-02  2.01e-02  2.34e-02  7.57e-02  3.29e-02  9.90e-01
  3  -1.8389e+00  -1.8319e+00  3.82e-03  4.32e-03  4.98e-03  1.59e-02  7.06e-03  7.92e-01
  4  -1.8436e+00  -1.8421e+00  7.92e-04  9.26e-04  1.07e-03  3.37e-03  1.51e-03  7.92e-01
  5  -1.8449e+00  -1.8446e+00  1.66e-04  1.99e-04  2.29e-04  7.16e-04  3.24e-04  7.92e-01
  6  -1.8452e+00  -1.8452e+00  3.47e-05  4.26e-05  4.90e-05  1.52e-04  6.95e-05  7.92e-01
  7  -1.8453e+00  -1.8453e+00  7.30e-06  9.13e-06  1.05e-05  3.23e-05  1.49e-05  7.92e-01
  8  -1.8453e+00  -1.8453e+00  1.53e-06  1.96e-06  2.25e-06  6.87e-06  3.19e-06  7.92e-01
  9  -1.8454e+00  -1.8454e+00  3.23e-07  4.20e-07  4.82e-07  1.46e-06  6.85e-07  7.92e-01
 10  -1.8454e+00  -1.8454e+00  6.79e-08  8.99e-08  1.03e-07  3.11e-07  1.47e-07  7.92e-01
 11  -1.8454e+00  -1.8454e+00  1.43e-08  1.93e-08  2.22e-08  6.61e-08  3.15e-08  7.92e-01
 12  -1.8454e+00  -1.8454e+00  5.40e-09  7.63e-09  8.78e-09  2.57e-08  1.25e-08  6.34e-01
---------------------------------------------------------------------------------------------
Terminated with status = solved
solve time = 3.02ms
>>> Clarabel - Results
Status: SOLVED
Iterations: 12
Objective: -1.845
Solve time: 3.02ms
result.x
6-element Vector{Float64}:
 1.6816915436720041
 0.5606903134362736
 1.08376975856668
 0.06564259407736482
 0.9999999842588818
 0.761585320454328

This page was generated using Literate.jl.