import clarabel
import numpy as np
from scipy import sparse
# Define problem data
P = sparse.csc_matrix([[0., 0.], [0, 0]])
P = sparse.triu(P).tocsc()
q = np.array([-1., -4.])
A = sparse.csc_matrix(
[[1., -2.], # <-- LHS of equality constraint (lower bound)
[1., 0.], # <-- LHS of inequality constraint (upper bound)
[0., 1.], # <-- LHS of inequality constraint (upper bound)
[-1., 0.], # <-- LHS of inequality constraint (lower bound)
[0., -1.]]) # <-- LHS of inequality constraint (lower bound)
b = np.array([0., 1., 1., 1., 1.])
cones = [clarabel.ZeroConeT(1), clarabel.NonnegativeConeT(4)]
settings = clarabel.DefaultSettings()
solver = clarabel.DefaultSolver(P, q, A, b, cones, settings)
solver.solve()