import clarabel
import numpy as np
from scipy import sparse
# Define problem data
P = sparse.csc_matrix([[0., 0.], [0, 0]])
P = sparse.triu(P).tocsc()
q = np.array([-1.,-4.])
A = sparse.csc_matrix( \
[[ 1., -2.], #<-- LHS of equality constraint (lower bound)
[ 1., 0.], #<-- LHS of inequality constraint (upper bound)
[ 0., 1.], #<-- LHS of inequality constraint (upper bound)
[-1., 0.], #<-- LHS of inequality constraint (lower bound)
[ 0., -1.]]) #<-- LHS of inequality constraint (lower bound)
b = np.array([0.,1.,1.,1.,1.])
cones = [clarabel.ZeroConeT(1), clarabel.NonnegativeConeT(4)]
settings = clarabel.DefaultSettings()
solver = clarabel.DefaultSolver(P,q,A,b,cones,settings)
solver.solve()